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ABSTRACT

The automobile industry has relied on computational fluid
dynamics (CFD) simulations to analyze and optimize the coating
and curing processes, speed up product development, and lower
the cost of product development. However, CFD modelings of
these processes are computationally expensive due to the com-
plexity of the models and the large number of simulations needed,
especially when its used complex sprays such as the nithrothermal
electrospray. As a result, more efficient methods must be devel-
oped to reduce computing time without compromising accuracy.
In this article, we analyze how deep learning techniques can be
used to predict coating and curing processes using electrospray
CFD simulation. A dataset of 3D Eulerian-Lagrangian CFD
simulations of coating and curing processes employing electro-
spray for the automotive industry has been used to train different
deep-learning models. We investigated how hyperparameters
such as batch size and layer count affected deep learning model
performance compared to conventional CFD simulations. For
this, we evaluated the deep learning models’ efficiency and ac-
curacy in terms of computing time. We also investigated how
hyperparameters such as batch size and layer count affected deep
learning model performance. Also, we’ve looked at the target’s
final droplet deposition, and distribution that is required to ac-
curately estimate the distribution. Furthermore, we studied the
percentage of snapshots of the droplet distribution electrospray
necessary to predict the target’s final deposition from the La-
grangian distribution. According to our findings, deep learning
models can drastically reduce the amount of time needed to run
CFD simulations. Depending on the model and hyperparameters
applied, we can forecast the whole CFD simulation by utilizing
somewhere between 10% and 15% of the initial spray develop-
ment. Also, we discovered that the use of recurrent cells as an
LSTM model outperformed the other models in terms of accuracy
and computational efficiency, where the LSTM layers can extract
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better the features of the input snapshots. Overall, our research
demonstrates the potential of deep learning techniques to signifi-
cantly shorten the computing time of CFD simulations of coating
and curing processes for the automotive sector. The results of
this study have significant implications for coating and curing
process design and optimization in the automobile industry as
well as in other industries where CFD simulations are frequently
employed.

1. INTRODUCTION
The paint shop plant in the automotive industry consumes the
most energy share of overall production, and requires specific
attention to enhance energy efficiency while reducing its envi-
ronmental impact. In addition, the paint film must exhibit high
physical quality, including corrosion resistance, aesthetic appeal,
surface durability, and mechanical protection [1]. To meet these
requirements, different techniques have been extensively studied
to improve the coating and curing process time [2]. One recent
idea is the use of nitrotherm electrostatic spray painting for the
coating process. This method has an efficient superior transfer
efficiency (TE) up to 90%, which can ideally reduce the process
time. Additionally, it eliminates unfavorable phenomena such
as overspray, unsatisfactory film quality, extreme material usage,
and significant pollution levels during the coating process. Ni-
trotherm electrostatic spray painting has become a fundamental
painting technology, particularly in the automotive and aerospace
industries [2].

Given its impact on the automotive industry, numerical mod-
eling techniques are essential tools for optimizing base concepts
to meet the requirements and for gaining a deep understanding of
turbulence airflow and droplet traveling mechanisms.

The use of heated nitrogen in an electrostatic spraying pro-
cess is a technology already in use in rare high-tech companies,
with very positive results [3]. They reported improvement in the
transfer efficiency (TE) process and faster paint curing time [4],
using heated nitrogen and compared it with conventional spraying
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using air. This approach can reduce the paint shop’s energy and
material consumption. The current study considers a broad range
of dominant parameters of described technologies as the process
that is still ambiguous.

A powerful method for improving comprehension and pre-
dicting fluid flow behavior is the use of machine learning models
in conjunction with computational fluid dynamics (CFD) simu-
lations. To predict fluid flow behavior from a small set of input
variables, such as boundary conditions or initial circumstances,
one frequent method is to employ machine learning models. This
can help in lowering the computational cost of running complete
CFD simulations.

Recent advances in machine learning have brought a revolu-
tion in computational fluid dynamics (CFD). One typical strategy
is to utilize machine learning models to forecast fluid flow behav-
ior based on a small set of input variables, such as boundary con-
ditions or initial circumstances [5]. Two deep learning machine
learning models, Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs), have demonstrated promis-
ing results in CFD applications [6]The application of modal de-
composition has proven effective in extracting the main dynamics
of the flow. However, it demands a thorough comprehension of
the mathematical manipulations involved [7]. In contrast, deep
learning models operate more like a “black box”, requiring less
explicit understanding of their internal processes.

Among the various machine learning approaches, Support
Vector Machines (SVM), Artificial Neural Networks (ANNs),
Recurrent Neural Networks (RNNs), and Convolutional Neural
Networks (CNNs) have all been extensively investigated and used
in a variety of study fields [8–10]. SVM is a classification tech-
nique that looks for the best line to draw between various classes.
The ANN method called a feedforward network can approximate
any function if it has enough hidden layers and neurons. The
RNN approach can model sequence data by transferring knowl-
edge from the prior time steps to the present one. The CNN
method, a sophisticated neural network, can accurately detect
spatial correlations in image data.

ANNs have been used to analyze nanofluid jet impingement
heat transfer and pressure drop in microchannel heat sinks [11].
Additionally, a radial basis neural network (RBFNN) was de-
veloped and employed to model the pressure drop for a cyclone
separator [12]. These models can automatically extract spatial in-
formation from the input data and learn complex fluid dynamics
patterns by utilizing the convolutional layers of CNNs.

However, for CFD applications, deep learning models often
require large amounts of data and computational power. Re-
searchers have suggested several methods to overcome this prob-
lem, such as using pooling layers to downsample the input’s spa-
tial dimensions and reduce the number of model parameters [13].
Data augmentation and transfer learning can also be employed to
enhance the performance of models with limited data [14].

Recurrent layers are a type of cell in these models that are
useful for modeling temporal relationships in data related to fluid
flow [15]. These models can record the fluid flow’s temporal
evolution using recurrent layers and generate predictions based
on the flow’s past behavior [16, 17].

The goal of this work is to introduce two novel techniques:

(1) numerical simulation of the Nithrothermal spraying technique,
and (2) proposal of a deep learning model based on the ANNs to
reduce the computational cost of the simulations.

1.1 Problem Definition

In Figure 1, a schematic of the computational domain and
boundary conditions nitro-therm electrostatic spraying for the
simplified process is shown. The dominant forces that interact
with droplets to achieve a TE higher than approximately 90%
are described. The resulting fine and consistent disintegrated
droplets achieve a high-quality finish on the target surface.

The computational domain of the electrospray is modeled as
a cylinder with a diameter of 540D and a height of 70D, where D
= 2.5 mm is the diameter of the liquid injection nozzle used for
normalization.

2. METHODS
In this section, we discuss the numerical procedure for

modeling the nitro-therm electrostatic thought CFD, which con-
structed our high-fidelity database to train a deep learning model.

2.1 NUMERICAL MODELLING METHODS

The CFD calculation of the electrospray is performed using a
three-dimensional (3D) comprehensive Eulerian-Lagrangian al-
gorithm, which is extended under the framework of the Open-
FOAM package. This model type was selected because previous
applications of a fully Eulerian algorithm for this type of electro-
spray proved to be extremely computationally intensive [18]. And
this provides an in-depth analysis of the fully turbulent airflow
field with the presence of heated nitrogen-enriched distribution.
An unsteady compressible Navier-Stokes solver is combined with
a Large Eddy Simulation (LES) model to accurately simulate the
turbulence effects of the air or nitrogen flow field on the droplets.
This is then two-way coupled with the effects of (I) electric field
generation and droplet charging process, (II) dynamics and tra-
jectory tracking of manipulated droplets, (III) primary and sec-
ondary breakup processes, (IV) atomized liquid evaporation, and
(V) deposited film structure and thickness. This implementation
is described with details in our previous publications [19–21].

Based on the grid independence study of the authors, the
medium grid with 1.2 million overall cells showed good agree-
ment in terms of convergence. The prism layer height is consid-
ered 1.4×10−4 m (at solid boundaries), for the grid to accurately
capture the high-Reynolds turbulent flow mechanisms (see [22]).
The turbulent flow dynamics in the boundary layer were properly
captured. Additionally, a mesh sensitivity evaluation by con-
sidering the Kolmogorov power law-decay ( 𝑓 −5/3) and proper
capturing of turbulent flow details was obtained. Figure 2 shows
the generated mesh with a total of 1.2 million cells.

Furthermore, the Courant number is kept below 0.45 and
the time step is set to 0.1 `s, ensuring a suitable time step for
high-precision results and faster convergence. The atmospheric
boundary condition is set to define the computing domains outside
of the borders.
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FIGURE 1: SCHEMATICS OF THE COMPUTATIONAL DOMAIN OF DESIGNED GEOMETRY FOR NITRO-THERM SPRAY TECHNIQUE ANALYSIS,
WHICH A CLOSE-WINDOW ON THE INLET BODY.

FIGURE 2: STRUCTURED GRID VISUALIZATION AROUND THE
DESIGNATED GEOMETRY FOR THE NITRO-THERM SPRAYING
ANALYSIS WITH A CLOSE-UP VIEW OF THE INJECTION SECTION.

2.2 MACHINE LEARNING METHODS
In our investigation, we tested different machine learning

model architectures, and for each one, we studied different hyper-
parameters and compared the results of the optimized model. The
tested models are based on the typical architecture of an Artificial
Neural Network Encoder-Decoder (AE). Figure 3 illustrates the
core of the methodology which is used.

Here we describe the steps for training our machine-learning
model like. Creating a machine learning model to predict the flow
field of an electrospray using 2D RGB images of the temporal
evolution of droplets as an input would involve the following
steps:

1. Collect a dataset of 2D RGB images of the temporal evo-
lution of the droplet spray for different working conditions.
These 2D images are cross-sections of the CFD results. This
dataset should include a range of different working condi-
tions, such as electric voltages, inlet velocity, temperature
of the nitrogen, and charge/droplet relation.

2. Pre-process the images by resizing them to a consistent size
and possibly converting them to grayscale (for better learn-
ing). It’s also useful to perform image normalization to

ensure that the values on all the datasets are comparable
(maximum/minimum normalization).

3. Split the dataset into training, validation, and testing sets,
with a proportion of around 80/20.

4. Train the model on the training and validation sets, adjust-
ing the hyperparameters as needed to improve performance,
using a chosen model architecture.

5. Evaluate the model’s performance on the testing set to deter-
mine how well it can predict the flow field of the electrospray
for unseen working conditions.

6. Fine-tune and optimize the model as necessary to achieve
the desired level of accuracy.

The basic unit of an ANN is a neuron that takes inputs,
performs computations on them, and produces outputs. The
computation performed by a neuron is typically a weighted sum
of its inputs followed by an activation function. Each neuron in an
ANN receives inputs from other neurons or external sources and
produces an output based on a weighted sum of inputs modified
by a nonlinear activation function. Activation functions introduce
nonlinearity into the model, allowing it to learn complex patterns
and relationships in the data. The output of each neuron is passed
as input to the next layer of neurons until the final output is
produced. This process is called forward propagation, and it’s
how the model makes predictions based on the input data [16].

Neuron weights and biases are learned through a process
called Backpropagation. Backpropagation adjusts the weights
and biases based on the difference between the predicted output
and the actual output. This process is repeated over and over on
the training dataset until the model’s predictions are sufficiently
accurate on new data. Backpropagation algorithms minimize
the loss function using common optimization algorithms such as
stochastic gradient descent or ADAM optimizer.
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FIGURE 3: MACHINE LEARNING METHODOLOGY BASED ON ARTIFICIAL NEURAL NETWORK.

A basic ANN architecture consists of neurons connected in
simple combinations. However, for temporal data, other types
of layers can be used that allow for sequential input data. A
recurrent neural network (RNN) model is an example of such a
model. In our work, we used standard RNN models and RNNs
with a specific type of repetitive cell known as LSTM (Long
Short-Term Memory). Hidden layers in the RNN models are
defined by mathematical formulas.

ℎ𝑡 = 𝜎(𝑊𝑖ℎ𝑥𝑡 + 𝑏𝑖ℎ +𝑊ℎℎℎ𝑡−1 + 𝑏ℎℎ) (1)

where, 𝑥𝑡 is the input at time step 𝑡. ℎ𝑡 is the output (hidden state)
at time step 𝑡. 𝑊𝑖ℎ is the weight matrix for the input. 𝑊ℎℎ is
the weight matrix for the hidden state. 𝑏𝑖ℎ and 𝑏ℎℎ are the bias
terms. 𝜎 is the activation function (e.g. TanH or ReLu)

The equation for a single LSTM cell (or layer) can be written
as follows:

𝑓𝑡 = 𝜎𝑔 (𝑊𝑓 𝑥𝑡 +𝑈𝑓 ℎ𝑡−1 + 𝑏𝑓 ) (2)
𝑖𝑡 = 𝜎𝑔 (𝑊𝑖𝑥𝑡 +𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (3)
𝑜𝑡 = 𝜎𝑔 (𝑊𝑜𝑥𝑡 +𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (4)
𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝜎𝑐 (𝑊𝑐𝑥𝑡 +𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) (5)
ℎ𝑡 = 𝑜𝑡 ∗ 𝜎ℎ (𝑐𝑡 ) (6)

where 𝑥𝑡 is the input at time 𝑡. ℎ𝑡−1 is the output of the previous
LSTM layer at time 𝑡 − 1. 𝑓𝑡 , 𝑖𝑡 , and 𝑜𝑡 are the forget, input, and
output gates, respectively. 𝑐𝑡 is the cell state at time 𝑡. 𝜎𝑔, 𝜎𝑐,
and 𝜎ℎ are the sigmoid, hyperbolic tangent, and ReLU activation
functions, respectively. 𝑊 and 𝑈 are weight matrices, and 𝑏 is
the bias vector.

3. RESULTS AND DISCUSSION
3.1 High-Fidelity CFD Results

A test case is defined by the parameter conditions
𝑇𝑁2 ,𝑈𝑁2 , 𝑉, 𝐷𝑑 , 𝑞/𝑚. 𝑇𝑁2 ,𝑈𝑁2 and 𝑉 are the temperature, ve-
locity and voltage of the injected gas that is nitrogen. The last
two values are the size of the droplets emitted and the electric
charge-to-mass ratio. Although these two can be joined into one,

defining the maximum droplet size, the working condition of a
specific test case becomes 𝑊𝑠 :

{︁
𝑇𝑁2 ,𝑈𝑁2 , 𝑉, 𝐷𝑚𝑎𝑥

}︁
. Reducing

the number of parameters that characterize a case helps in the
correlations for the machine learning model.

We tested a total of 26 different working conditions. From
this dataset, we separated two test cases to use in testing the deep
learning model. The two cases for testing the predictions of the
model are defined as Test A and Test B, with the conditions in the
Table 1. A total number of time steps 𝑁 = 120 was extracted for
all simulations. Since the total simulation time is 𝑇 = 30 ms, we
extracted snapshots with a time-step of 𝛿𝑡 = 0.25 ms.

Figure 4 shows the solution results under different working
conditions. Figure 4a and 4b shows the 3D view of the electro-
spray, showing the temperature and velocity fields on the droplets.
Figure 4c shows the droplet’s deposition on the target wall, where
the droplets are coloured by its diameter.

3.2 Predictions with Deep Learning models
Having the dataset constructed with input 𝑋 as the temporal

2D images of the side view of the spray and output 𝑦 as images
of the final deposition on the target, we designed different deep
learning models, considering the previous considerations.

Consider that the initial goal is to find a suitable model
that takes 𝑁𝑠 snapshots of the side view of the spray at times
𝑡 : {𝑡1, 𝑡2, · · · , 𝑡𝑁𝑠

} as input, and produces a prediction of the
final spray deposition at time 𝑇 = 30 as an image snapshot of the
top view of the plate target. This image shows the density of the
deposited droplets.

The models were trained using the mean squared error loss
function and the Adam optimizer [23] with a learning rate of
0.001. The model’s performance was evaluated on the validation
set using the mean squared error and mean absolute error metrics.
The Mean Squared Error (MSE) and Mean Absolute Error (MAE)
metrics for the loss are defined as follows:

𝐿𝑀𝑆𝐸 =
1
𝑛

𝑛∑︂
𝑖=1

(𝑦𝑖 − ˆ︁𝑦𝑖)2
, (7)
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Ti = 393.15 K

(a)

60 kV

(b)
Ti = 393.15 K Ti = 543.15 K

Ue = 60 kV Ue = 60 kV

Ti = 393.15 K

Ue = 0 kV
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FIGURE 4: RESULTS FROM 3D EULERIAN-LAGRANGIAN CFD MODEL SHOWING THE (A) INFLUENCE OF THE INLET TEMPERATURE OF THE
NITROGEN, COLOURED BY THE TEMPERATURE OF THE DROPLETS (B) INFLUENCE OF THE ELECTRIC POTENTIAL APPLIED, COLOURED
BY THE VELOCITY MAGNITUDE OF THE DROPLETS. (C) DROPLET DEPOSITION COLOURED BY THE DROPLET’S DIAMETER.
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TABLE 1: WORKING CONDITIONS TESTED FOR DATABASE CONSTRUCTION.

Case no. 𝑇𝑁2 [K] 𝑈𝑁2 [m/𝑠2] Φ𝑒 [kV] 𝑞𝑑,𝑚𝑎𝑥 [pC]
Base 393.15 150 60 0.57
Train/Validation [298.15, 543.15] [0, 300] [0, 90] [0.0,12.30]
Test A 393.15 150 30 0.57
Test B 393.15 150 60 4.58

𝐿𝑀𝐴𝐸 =
1
𝑛

𝑛∑︂
𝑖=1

|𝑦𝑖 − ˆ︁𝑦𝑖 | , (8)

where n is the number of samples, 𝑦𝑖 is the true value of the 𝑖𝑡ℎ

sample, and ˆ︁𝑦𝑖 is the predicted value of the 𝑖𝑡ℎ sample.
The data was divided in (𝑁𝑛, 𝑁𝑣, 𝑁𝑡 ) = (21, 3, 2), cor-

responding to the number of cases for training, validation and
testing, respectively. Since our dataset is composed of a small
dataset (26 cases), the validation/training was 13%, and the con-
vergence of the models upon the epoch was defined by an early
stopping criterion, avoiding overfitting the model’s parameters.
This criterion stops the training whenever the 𝐿𝑀𝑆𝐸 error exceeds
the minimum reached within 1000 epochs.

An important hyper-parameter of the training is the batch size
𝑁𝑏, which defines the number of samples to be trained from the
training set through the network. Since it can affect model con-
vergence, generalization, and computational efficiency, choosing
a suitable batch size is crucial in deep learning applications. The
choice of batch size is typically influenced by the complexity of
the model, the size of the dataset, the hardware’s memory capa-
bilities, and the optimization strategy used for training. On the
one hand, low values of 𝑁𝑏 take a longer time in learning time
but with higher accuracy. On the other hand, large values of
batch size take a shorter time in learning time but reversely with
a lower accuracy [24]. To have the best batch size, we tested the
different network architectures for different batch sizes of 1, 2,
and 4. Also, we examined for the different models designed and
for different sizes of input snapshots. The results are presented
in Figure 5a.

Figure 5a shows the loss values for all the different architec-
tures tested. The 𝐿𝑡𝑒𝑠𝑡 is the MSE error calculated for both test
cases (Test A, Test B) and the mean value was obtained. We then
observe that a batch size of 1 using LSTM layers leads to a lower
range of error. To observe how the batch size affects the training,
Figure 5b shows the evolution of the loss on the epochs.

The quantitative comparison between the model architec-
tures, the choice of the number of input snapshots, and the hy-
perparameters, for the choice of the best ones are done with the
MSE and MAE error initially, as we showed. Although since
we are dealing with images more than two parameters are used
in order to ensure the quality reconstruction of the images. In
the field of reconstructing images, there are two parameters that
are commonly used. The first is the Structural Similarity Index
(SSIM) is a metric used to measure the similarity between two
images. It considers the luminance, contrast, and structure of the
images. The SSIM is calculated using the following equation,

SSIM (𝑥, 𝑦) =
(︁
2`𝑥`𝑦 + 𝑐1

)︁ (︁
2𝜎𝑥𝑦 + 𝑐2

)︁(︁
`2
𝑥 + `2

𝑦 + 𝑐1
)︁ (︁
𝜎2
𝑥 + 𝜎2

𝑦 + 𝑐2
)︁ (9)

where 𝑥 and 𝑦 are the two images being compared, `𝑥 and `𝑦
are the mean values, 𝜎𝑥 and 𝜎𝑦 are the standard deviations, 𝜎𝑥𝑦

is the covariance, and 𝑐1 and 𝑐2 are constants that are used to
stabilize the division. The numerator of the equation measures
the similarity in luminance and contrast between the two images,
while the denominator measures the similarity in structure. A
higher SSIM value indicates a greater similarity between the
images.

The other important measurement is the Peak Signal-to-
Noise Ratio (PSNR) given by,

PSNR = 10 · log10

(︃
MAX2

MSE

)︃
(10)

where, PSNR is the peak signal-to-noise ratio, MAX is the max-
imum possible pixel value (e.g., 255 for 8-bit images), and MSE
is the mean squared error between the original and reconstructed
images. The logarithm function is base 10.

To evaluate the performance of our artificial neural network
(ANN) and visualize the relationship between these parameters,
we generated a heatmap of the pairwise correlation between the
different parameters (all of the discussed until this point), see
Figure 6.

Pairwise correlation is a statistical method for determining
the degree and direction of a linear relationship between two
quantitative variables. The correlation coefficient is determined
for each pair of variables in a data set in pairwise correlation
analysis. The resulting matrix of correlation coefficients demon-
strates how each variable in the data set is related to every other
variable. The correlation coefficient is a value ranging from -1 to
1, indicating the degree of linear association between two vari-
ables. A value of one implies a perfect correlation, in which as
one variable grows, the other decreases proportionally. As shown
by the resulting map, we see that the error decreases by a rate of
20% with the number of snapshots used, and the batch size has a
proportion of 17% on the maximum error of the reconstruction.

With these results, we chose the model that uses LSTM lay-
ers, with a number of input snapshots of 12 and a batch size of
2. After training the model, we predicted the droplet deposi-
tion for Test A and Test B. For Test A, we obtained the results
shown in Figure 7. The figure compares the CFD results with
the predictions made by the ML model. Notice that we chose
two very different working conditions in order to test the model’s
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(a) (b)

FIGURE 5: (A) COMPARISON OF THE LOSS ON THE TRAINING, VALIDATION AND TEST SET, FOR ALL THE DEEP LEARNING MODELS
TESTED (ANN, RNN, AND LSTM). (B) EVOLUTION OF THE LOSS DURING THE TRAINING FOR THE MODEL OF LSTM.

FIGURE 6: HEATMAP OF THE PAIRWISE CORRELATIONS BE-
TWEEN THE DIFFERENT PARAMETERS USED FOR EVALUATION
OF THE DEEP MACHINE LEARNING MODEL.

FIGURE 7: PREDICTION OF THE TARGET’S DROPLET’S DEPOSI-
TION FOR THE WORKING CONDITIONS OF THE TEST CASE B.

generalization ability. The results show very good prediction per-
formance, with the core and shape being precisely captured and
the error only occurring at the edges. Although there were errors
in the droplets scattered by the velocity field, it is important to
note that what really matters is capturing the core, which is the
region of high density.

Having the prediction of the unseen test cases, we now see
where the difference is between the prediction and the real CFD
solution in Figure 8. As we can observe, the main core of the
target’s deposition is accurately predicted. The edges of the
droplet’s distribution are the region that has more differences,
although these are very tiny droplets that are not significant for
the overall prediction.

Since the goal is to predict the area of deposited droplets on
the target, we calculate the final error of accuracy by the area of
droplets of the CFD vs. the ML prediction, as,

𝜖𝐴 = |𝐴𝑀𝐿 - 𝐴𝐶𝐹𝐷 | /𝐴𝐶𝐹𝐷 (11)

Having a maximum error of 0.877% for the deposited droplets on
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FIGURE 8: ERROR ON THE PREDICTION OF THE TARGET’S
DROPLET’S DEPOSITION FOR THE WORKING CONDITIONS OF
THE TEST CASE A (LEFT) AND TEST CASE B (RIGHT ).

the target for the Test A. This very low error is very promising,
for fast simulation of this type of fluid dynamic problems.

4. CONCLUSION

In this paper, we developed a deep-learning model designed to
reduce computational time and obtain accurate results for two im-
portant aspects of our Eulerian-Lagrangian flow dynamics case.
Our machine-learning model analyzes two-dimensional images
of snapshots of the spray distributions, from both the side view
and top view. We tested different architectures of artificial neu-
ral networks and found that when dealing with time-series data,
recurrent layers significantly improve the accuracy of the predic-
tions. Our findings show that adding recurrency to the encod-
ing/decoding layers helps with the extraction of features, since
we have temporal inputs, where RNN/LSTM cells were imple-
mented. From the results, we observed that the RNN network
is more sensitive to the batch size 𝑁𝑏 compared to the LSTM
network.

In summary, this paper introduces a deep-learning model
that demonstrates the ability to make accurate predictions. Our
results show that we can reduce the computation time by 90%. By
computing the initial evolution of the nitro-thermal spray using
CFD (which accounts for only 10% of the full spray evolution),
we can predict the final shape of the deposition on the target with
an error of approximately 1% for the area of the deposited liquid.
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