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ABSTRACT

The impetus of the current three-dimensional Eulerian–Lagrangian work is to analyze the impact of simultaneously using the inventive high-
voltage conductors and Nitrotherm spraying technique for maximizing the industrial painting process efficiency. This investigation employs high-
fidelity computational fluid dynamics (CFD) results in deep learning models as an input dataset. The novel conductors are called high-voltage
retractable blades (HVRB) and high-voltage adjustable control-ring (HVACR) mounted on the head of the electrostatic rotating bell sprayer. The
influence of dominant operational parameters, such as temperature and velocity of injected nitrogen or air, droplets’ electric charge values, and their
size ranges, and electric field density are examined in the considered database for the Nitrotherm spraying methodology. This broad range of para-
metric investigation illustrates that the inclusion of shaping nitrogen flow, manipulated electric field density, and droplet charging weights signifi-
cantly affect the spraying deposition rate. The pressurized clean heated nitrogen flow, which is injected from the nozzles of the atomizers, positively
redirects and harmonizes the charged droplets that construct an optimized spray plume pattern with a smaller diameter. Using innovative HVRB
and HVACR conductors is manipulated the electric fields and leads to denser distribution, intensifying the acting electric force on the droplets,
resulting in higher spraying transfer efficiency (TE) and thicker film formation. Based on the results, employing the introduced conductors in com-
bination with the heated nitrogen instead of air leads to higher TE, rare overspray occurrence, formation of an esthetic paint film, lower paint
consumption, and application time. Also, the collected complete database is employed for machine learning investigation to predict flow with high
accuracy, aiming to reduce computational time/cost. A convolutional auto-encoder is used to reduce the computational cost with just 10% of the
initial CFD computations, with a mean error of 1% on the prediction of the deposited droplet areas of the spray. The analysis revealed that by
employing recurrent convolutional layers, superior capturing of the input pattern is obtained, which significantly aids the final prediction.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0156571

I. INTRODUCTION AND MOTIVATION

As the most remarkable energy consumer during industrial pro-
duction, the paint shop plant needs specific attention to enhance energy
efficiency while providing paint film with high physical qualities, such
as corrosion resistance, surface durability, and mechanical protection
(Akafuah et al., 2016). Nitrotherm electrostatic spray-painting method
with superior transfer efficiency (TE) up to 90% under an ideal condi-
tion is become a fundamental painting technology, particularly in the

coating process of the automotive and aerospace industries (Pendar
et al., 2022). The primary objectives of this technology can be stated as
shorter process times and the avoidance of undesirable phenomena,
such as overspray, unsatisfactory film quality, excessive material usage,
and significant pollution levels. Numerical modeling of the coating pro-
cess using the electrostatic rotating bell sprayers (ERBSs) with optimiza-
tion bases concepts need to be performed to meet the aforementioned
requirements and expose a deep insight into turbulence airflow and
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droplets traveling mechanisms. Nitrotherm electrostatic spraying also
can be broadly employed in other significant applications of pharma-
ceutical industries (pill coverage), disinfection operations (microbial
droplets removal from the polluted surface), agriculture pesticides, and
crop dusting. This work aims to develop this approach by introducing
two novel techniques, employing simultaneously the Nitrotherm spray-
ing technique and high-voltage conductors mounted on the head of the
ERBS to maximize the spraying process efficiency.

During the past two decades, some experimental and numerical
research has considered the main spray coating characteristics, includ-
ing the formation of film, ligament, and droplets inside the rotary bell
cup, transportation of disintegrated droplets, and final film formation
on the target. In numerical modeling, mainly Euler–Lagrange
approach has been used compared to Euler–Euler method for spraying
two-phase flow simulation.

Studies on electrostatic spraying are mainly focused on the areas
of the electric field and charging process (I), employing high-voltage
external conductor (II), droplets formation, disintegration, transporta-
tion, and deposition process (III), atomized droplets’ breakup mecha-
nism (IV) and evaporation procedures (V), spray droplet size
distribution analyzing (VI), novel Nithrotherm spraying technique
employing in electrostatic spraying (VII), which are extensively
reviewed in the following paragraphs. Also, related published literature
about employing the deep learning strategy in computational fluid
dynamics (CFD) (VIII) has been addressed.

(I) Electric Field and Droplets Charging Process During
Spraying: The effective implementation of the droplet charging pro-
cess and electric field production is significant challenges in using the
electrostatic sprayer. The droplet charging procedures as a critical
determinant in the ERBSs’ spray shape controlling are provided in
Ellwood and Braslaw (1998). Im et al. (2001) assert that an effective
application of an electric field enhances coating effectiveness. Ye et al.
(2002) implemented a corona charge mechanism during the spraying
procedure. Their evidence found that the particle size significantly
depends on the space charge. Im et al. (2004) discovered that the shape
of the spray plume is highly influenced by both the charge-to-mass
ratio and the electric force. According to their findings, the total TE of
the ERBS is around 44%, 90%, and 94% under zero voltage, �80, and
�90 kV, respectively. Toljic et al. (2011) investigated various charge-
to-mass ratios of droplets of varying sizes and realized that they had a
significant effect on the resulted film by enhancing the TE. The
OpenFOAM framework was used by Dastourani et al. (2018) to pro-
pose a numerical solution for modeling the electro-spraying process in
the cone jet. The results showed good agreement with the experimen-
tal data, which supports the viability of the simulation methods for the
electrospray phenomena. They revealed that the correlations of the liq-
uid flow rate and electric potential could appropriately predict the
establishment of the flow modes and vortices characteristics. Pendar
and P�ascoa (2019; 2020) evaluated the fundamental flow characteris-
tics of the spraying in the ERBS, focusing on droplet charge, electric
field, and ambient conditions. Their numerical analysis showed that
the inclusion of droplet charging and electric field coupling, in differ-
ent parametric values, significantly impacts the atomized droplet dis-
tribution over the spray plume and the deposition rate. They found a
balance between the bell cup surface voltage and the droplet’s charged
values, revealing improvements in the TE and performance of the
ERBS.

(II) High-voltage External Conductor and Related Patent:
During the electrostatic spraying process, droplets can be electrically
charged using either an external or internal methodology. In the inter-
nal/direct method, the supplied high-voltage DC to the applicator
charges the liquid before injecting and atomizing. In the external/
indirect approach, the high voltage is applied to a forward-facing elec-
trode series (Domnick et al., 2006). The external and internal charging
techniques are appropriate for water-based and solvent-based paints
because of the low and high solvent conductivities, respectively
(Pendar et al., 2022). Wang et al. (2006) presented an electrostatic
spray gun that is combined with circular pattern electrodes, such as
the sprayer’s cup design to shape a circular cone spray plum or two
linear electrodes to support the majority of the liquid particles in an
aspect of electrical charging. Domnick and Thieme (2006) modified
the electric field distribution by adding external symmetric corona
needles to the electrostatic sprayer and discovered a positive effect on
deposited film thickness and TE. Nolte et al. (2019) disclose electrode
arrangement in support of an electrostatic atomizer, which is gener-
ated an electric field that assists in providing discharge currents flow-
ing across a housing surface. An electrostatic atomizer with an
electrode attached to the sprayer’s head spot was proposed by
Terebessy (2019). These electrodes were setup so that a counterbal-
anced quantity of the opposing electrical charge be produced to deal
with the electrical charge of the sprayed liquid and appropriately direct
them. Cooper (2021) introduces a spray dispersal feature that shortens
the time needed for the paint cloud to hang after spraying. Their sys-
tem includes a related sprayer cup with a nozzle to charge, atomize,
and spray the injected liquid. Pendar and P�ascoa (2021) proved the
substantial influence of the voltage and appropriate external electric
charging by employing a high-voltage ring shape conductor in the
spray deposition rate. Mounting this conductor on the ERBS increased
the TE value by around 10%. According to their findings, the moder-
ate charge-to-mass ratio (qq

m � �1 mC=kg) produced the highest TE.
(III) Droplets Formation, Transportation, and Deposition:

The injected liquid disintegration, ionization, and electrical charging
happen inside and close to the sprayer’s head. Inside the rotary cup
surface, the generated sheets disintegrate into fragments because of
aerodynamic waves and then transform into ligaments due to surface
tension. Then, elongated ligaments disintegrated into the distribution
of the non-uniform droplets farther from the cup’s rim. According to
Domnick and Thieme (2006), the fragment pattern evolved less con-
sistently as the bell cup’s rotational speed boosted. Liu et al. (2012) cor-
related the equation for droplet size after examination of ligament and
droplet generation mechanisms over a wide range of operational set-
tings. Soma et al. (2015) assessed the liquid film behavior on a rotating
bell surface and reported the thickness of the film near the bell edge.
Moore (2017) assessed the disintegration process between ligaments
and droplets during employing serrated and non-serrated rotary cups
at different paint flow rates. Also, Shen et al. (2019) experimentally
evaluated the liquid film formation inside the rotary cup with obtained
a series of snapshots.

(IV) Droplets Breakup During Electrostatic Spraying: The
breakup process, subjecting injected paint liquid to the robust centrifu-
gal force due to the bell cup rotation in an electrostatic sprayer, is a
critical phenomenon that needs consideration. This process is divided
into two main modes, primary and secondary. In the primary mode,
the diameter and angle of the droplets inside the rotary bell cup are
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determined, and rim deformation and expansion of droplets occur
(Jackiw and Ashgriz, 2021). The secondary breakup procedure is a
prominent phenomenon when the droplets travel from the bell cup
to the workpiece (Im et al., 2001). Recently, Rosin–Rammler and
Chi-squared models have been broadly employed to predict the ini-
tial distribution of droplets during electrostatic spraying. The first
one is more accurate compared to the experimental distribution
(Pendar and P�ascoa, 2020). The strength of different efficient sec-
ondary breakup models, including the Reitz-Diwakar, Reitz-KHRT
Hybrid, Pilch-Erdman, Taylor analogy breakup (TAB), and modi-
fied TAB, are explained and examined in electrostatic spraying in
the study by Pendar and P�ascoa (2020). Using a rotary bell sprayer,
Shen et al. (2017) encountered difficulties with the droplets’ primary
breakup, film generation, and propagation inside the rotary bell.

(V) Evaporation Process in Spraying: The evaporation of drop-
lets and their heat transfer during electrostatic spraying is precisely
modeled in references of Arumugham-Achari et al. (2015) and
Shrimpton and Laoonual (2006). The application of the electric charge
and its impact on the droplet’s evaporation process were addressed by
Brentjes et al. (2020). Pendar and P�ascoa (2021) evaluated the drop-
lets’ energy balance during evaporation in electrostatic spraying using
Ranz and Marshall approach. Also, the droplets’ temperature is
described in detail by Dbouk and Drikakis (2020) via computing com-
plete solving energy and enthalpy equations.

(VI) Spray Size Distribution Analyzing in Spraying: The pro-
duced droplet size distribution by the considered types of the sprayer
in the current work, the ERBSs, significantly affects the TE and finish
quality. Better quality was produced with smaller droplet sizes and
lower TE, whereas the opposite was true with larger size dispersion
(Pendar et al., 2022). The dominant parameters influencing the distri-
bution of droplet size in electrostatic sprayer operation are injected
cup’s rotational speed, liquid paint flow rate, inlet air flow rate, and
rotary cup design (Ray et al., 2019). Some basic works, such as
Ellwood and Braslaw (1998), confirmed droplet size reduction by
growing the rotational speed while increment by increasing the paint
flow rate. Yasumura et al. (2011) revealed an impressive effect of elec-
tric voltage on medium-size of droplets diameter (dp � 10–40lm).
Ahmed and Youssef (2012) clarified the impact of the Reynolds num-
ber, Weber number, and flow coefficient on the Sauter mean diameter
(SMD ¼

P
NiD3

i =
P

NiD2
i ) as a meaningful metric for defined drop-

let size distribution. Ni and Di denote the droplet numbers in the ith
size range and diameter. Ahmed and Youssef (2014) worked on the
size of the droplets produced during the disintegration as well as
describing the transition process among the film, ligament, and drop-
lets. Wilson et al. (2018) visualized ligament and droplet formation
and proved the SMD decrement, one quarter, at the maximized rota-
tional speed. The phenomena of non-Newtonian droplets disintegra-
tion were studied by Shen et al. (2019). Oswald et al. (2019) illustrated
the effect of the elongational resistance on the disintegration procedure
inside the sprayer’s rotary bell cup. Droplet size distribution prediction
in electrostatic sprayer operation still is ambiguous and requires more
attention.

(VII) Nithrotherm Spraying Technique: The technology of
using heated nitrogen in an electrostatic spraying process is already
experienced in rare high-tech companies, and very positive results
have been observed. Spang (2014) briefly explained the spray coat-
ing using heated nitrogen and compared it with conventional

spraying using air. They reported improvement in the transfer effi-
ciency (TE) value and faster paint curing time. Bensalah et al.
(2014) announced the higher transfer efficiency for the Nitrotherm
coating method. This approach can develop the paint shop’s
energy and material consumption. Recognizing the mentioned
technologies process is still ambiguous that described in the cur-
rent study.

(VIII) Deep Learning: A powerful method for improving com-
prehension and fluid flow behavior prediction is using machine learn-
ing models in conjunction with computational fluid dynamics (CFD)
simulations, especially in industrial applications like the present work.
This helps in lowering the computational cost of running complete
CFD simulations. Computational fluid dynamics has revolutionized
thanks to recent advances in machine learning. One typical strategy is
to utilize machine learning models to predict fluid flow behavior based
on a small set of input variables, such as boundary conditions or
beginning circumstances (Kochkov et al., 2021). Convolutional neural
networks (CNNs) and recurrent neural networks (RNNs), as two
prominent machine learning models, have demonstrated promising
results in CFD applications (Yang, 2008). For instance, CNNs have
been used to predict turbulent flows accurately (Kim et al., 2022),
ANN to analyze the nanofluids jet impingement heat transfer and
pressure drop in the microchannel heat sink (Naphon et al., 2019), or
even radial basis neural network (RBFNN) is developed and employed
to model the pressure drop for cyclone separator (Elsayed and Lacor,
2011). These models can automatically extract spatial information
from the input data and learn complex fluid dynamics patterns by uti-
lizing the convolutional layers of CNNs. On the other hand, it has
been demonstrated that RNNs are useful for modeling temporal rela-
tionships in data related to fluid flow (Brunton et al., 2016). These
models can record the fluid flow’s temporal evolution using recurrent
layers and generate predictions based on the flow’s past behavior
enhanced super-resolution generative adversarial network (GAN) is
applied as a model to reconstruct the high-resolution velocity fields,
which are constituted by CNN models (Yousif et al., 2022), to map
spatially limited turbulence to high-fidelity data (Yousif et al.,
2021). Convolutional architecture remains dominant in most com-
puter vision tasks, such as objection, image classification, and video
prediction. Thanks to their efficiency and desired inductive biases,
e.g., locality and translation equivariance, convolution neural nets
have been widely applied to emulate and predict complex spatio-
temporal physical dynamics. Here, we propose a deep learning
method for forecasting fluid flow behavior using a constrained set
of input variables. The spatial and temporal properties in the fluid
flow data are specifically captured using convolutional models. To
increase the effectiveness and accuracy of the models, cutting-edge
techniques are applied, such as transfer learning with recurrent
learning cells. The performance of the applied method to other
cutting-edge techniques is compared while evaluating it on a real-
world CFD dataset.

This paper’s structure is as follows: Sec. II explains the mathemat-
ical model and the numerical implementation used for simulations.
Also, this section provides information on different considered electro-
static sprayers’ design configurations and describes the simulation set-
tings. Section III concentrates on analyzing the results obtained by
CFD simulating and deep learning modeling, and finally, Sec. IV
presents concluding remarks.
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II. SIMULATION METHODOLOGY
A. Governing equations

Here a three-dimensional (3D) comprehensive Eulerian–
Lagrangian algorithm is extended under the framework of the
OpenFOAM package to provide an in-depth analysis of the fully tur-
bulent airflow field with the presence of heated nitrogen-enriched dis-
tribution (I), electric field generation and droplets charging process
(II), dynamics and trajectory tracking of manipulated droplets (III),
primary and secondary breakup processes (IV), atomized liquid evap-
oration (V), and deposited film structure and thickness (VI). An
unsteady compressible Navier–Stokes solver is combined with a Large
Eddy Simulation (LES) model to precisely simulate the turbulence
effects of the air or nitrogen flow field on the droplets.

(I) Continuous Phase: The Favre average compressible equa-
tions of Navier–Stokes (NS) by applying the LES filtering method are
used in this work to model the airflow. We assume a compressible
flow due to the existence of supersonic flow regimes near the rotary
bell cup surface. The LES turbulence approach is designed to calculate
the larger and energy-rich eddies while modeling the smaller sub-grid
all over the computational domain. This model can handle the stress
rate and high strain of complex flows inside and around the sprayer’s
head. When using LES, all variables are separated into grid scale (GS)
(�f ) and sub-grid scale (SGS) (f 0) components, which express as
f ¼ f 0 þ �f . The grid-scale component is defined as �f ¼ G � f , where
G ¼ GðX;DÞ and D ¼ DðXÞ are denoted by the filter function and fil-
ter width (Ghosal, 1996). The top-hat filter (De Villiers, 2006), an
implicit filter affiliated with the grid spacing that control whether the
minor scales are contained, has been used here under the framework
of the OpenFOAM source code:

Gðx;DÞ ¼
1=D : if ðx � D=2Þ
0 : otherwise:

(
(1)

The grid spacing is employed to set the filter width D (De Villiers,
2006). Here, the scales below the length of the filter width D are mod-
eled and a “smooth” delta is used, which is explained in detail in
Roohi et al. (2016). The smoothed distribution gradient is fixed by
interfering with the adjustable coefficient (CDS) to the filter width
D ¼ maxðDP; DN=CDSÞ. N and P are the definition of neighbor cell
and present cell, respectively. The function of G convolved the NS
equations and the following filtered continuity and momentum equa-
tions are used in the LES model:

@�q
@t
þ @ð

�q �ujÞ
@xj

¼ 0; (2)

@ ð�q�ujÞ
@t

þ @ ð
�q�ui�ujÞ
@xj

¼ � @
�p

@xi
þ @

�r ij

@xj
� @ sij
@xj
þ fst þ fes þ S: (3)

p is pressure and ~rij is the viscous stress tensor, which is defined as

~rij ¼ �l
@~ui

@xj
þ @

~uj

@xi
� 2
3
dij
@~uk

@xk

 !
; (4)

dij and �l denote the Kronecker delta function and kinematic viscosity,
respectively. The body forces of surface tension (fst), electric stress (fes)
and other operating forces like gravity (S) are added to the above for-
mula. The unresolved transport element, sij as a SGS is defined as

sij � �qðuiuj � uiujÞ: (5)

The above formula is modeled using an eddy-viscosity sub-grid
approach as follows:

sij ¼
2
3

�qkI � 2lkSij ; (6)

Sij ¼
1
2

@ui
@xj
þ @uj
@xi

 !
: (7)

Sij is the rate-of-strain tensor of resolved scale and lk is sub-grid scale
turbulent viscosity obtained by the “Local Eddy-Viscosity” approach.
Here, the “One Equation Eddy Viscosity (OEEV)” SGS model is used
as follows:

@ �qkð Þ þ r � �qk~uð Þ ¼ �sij � Sij þr � ðlkrkÞ þ �qe; (8)

lk ¼ ck �q D
ffiffiffi
k
p

; e ¼ ce k
3=2=D; (9)

where ck and ce as two constants are set as 0.094 and 1.048 in the cur-
rent code. Detailed analysis of various SGS models can be found in the
study by Zahiri and Roohi (2019) and LarKermani et al. (2018).

(II) Electric Field Generation: The electric field is produced by
the potential difference between high-voltage surfaces, highly nega-
tively charged, near the liquid injection nozzle, and positively charged
workpiece. The relation among the potential (u) and space charge
density (qq) is modeled by using the Poisson equation:

r2u ¼ �qq

e0
: (10)

The electric field intensity (~E) and charge of each particle (Qi) are
computed as follows:

~E ¼ �ru; e0 r � E ¼ qq; (11)

Qi ¼ mPi q
q
mi
¼ ðqPVPi Þqq

mi
; (12)

e0, qP , q
q
mi
, and VPi are air electrical permittivity, and density, charge

to mass ratio and volume of each individual droplet. It needs to be
noted that Qi and qq have different unit of charge and charge per unit
volume. Finally, the electric force per unit mass (FE), which defines
ion wind airflow (electric field) effects on moving droplets:

FE ¼ qPi E ¼ mPi q
q
mi
E ; E � rqq ¼ �qq2

e0
: (13)

mPi and qPi are individual droplet mass and charge, respectively.
(III) Discrete Phase of Droplets (Two-way Coupling with

Continuous Phase): The discrete phase of the charged droplets’ motion
in the air/nitrogen flow is solved in the Lagrangian frame using differen-
tial equations and force balance integration based on Newton’s law. The
influential forces on droplets’ trajectory that include Stokes drag (fD),
gravity (fG), electric (fE), and added-mass (fM) forces express as follows:

~FP ¼ mp
@~up

@t
¼ 3

4
Cd

qf

qP

mP

2RP
jð~uf �~uPÞjð~uf �~uPÞ

þ ðqP � qf ÞVP~g þ~EqP þ
qf VP

2

@ð~uf �~upÞ
@t

;

(14)

~uP ,~uf , qP , and qf are the particle and fluid velocity vector and density,
respectively. Also, VP , RP , mP , and qP are the volume, radius, mass
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and the charge of the droplets, respectively. The drag coefficient (CD)
that depends on Reynolds number of droplets (Rep ¼ 2RPj~uf

�~upjqf =lf ) define as follows:

CD ¼
24=ReP; if ReP < 1

ð24=RePÞð1þ 0:5Re0:687P Þ; if 1 � ReP � 1000

0:44; if ReP > 1000;

8>><
>>: (15)

~lf is the fluid (air) dynamic viscosity.
(IV) Breakup Models: Breakup modeling, as the most critical

phenomenon during the spraying procedures, is divided into two sets,
primary and secondary. Here, the Rosin–Rammler distribution
(Yd ¼ exp ð�d=�dÞn) is employed for the primary breakup modeling
to determine the droplet’s diameter and angle inside the rotary bell
cup. The modified table breakup method is applied for the secondary
breakup procedure modeling. This approach characterized based on
the Weber number (We ¼ qu2relDP=r). In this model, the parent
droplets depend on product generation rate (dnðtÞ=dt) and propor-
tional constant (kbr) breaks into product droplets, as follows:

dnðtÞ=dt ¼ �3KbrnðtÞ;Kbr
k1x if We �Wet

k2x
ffiffiffiffiffiffiffi
We
p

if We >Wet :

(
(16)

The kbr value is dependent on the breakup regime and parent proper-
ties, and transient Weber number (Wet) is set as 100 for the present
computation. Also, k1 and k2 are perfectly adapted to the droplet
velocity and size based on the experiment (k1 � k2 ¼ 0:2) (Pendar
and P�ascoa, 2020). The product droplet distribution has been assumed
as

rproduct
rparent

¼ e�Kbr t ; (17)

rparent and rproduct are the parent and product droplets radius. More
details about this model are provided in our previous work, Ref
Pendar and P�ascoa (2020).

(V) Energy Evolution and Evaporation Process of Droplets:
The temperature evolution of droplets is calculated by the following
energy equation:

mpcp
dTp

dt
¼ ApðhðTf � TpÞ þ _qabs � reT4

pÞ; (18)

cp, Ap, r, h, and e are the specific heat capacity and surface of droplets,
Boltzmann constant, heat transfer coefficient, and radiation emissivity,
respectively. Ranz–Marshall heat transfer method (Ranz and Marshall,
1952) is used to evaluate a paint droplet’s mass due to the evaporation
procedure. The Nusselt number and droplet diameter are used to
calculate the heat transfer coefficient (h ¼ Nuk=dp ¼ 2ð
þ0:6

ffiffiffiffiffi
Re
p

Pr1=3Þj=dp).
(VI) Deposited Film Formulations: The mass conservation,

momentum, energy, and thickness formulations of constructed film
during the spray droplet deposition on the target are described in
detail in the study by Pendar and P�ascoa (2021).

B. Problem description

(I) Conceptual Explanation of Approach: Fig. 1 shows a sche-
matic of the Nitrotherm electrostatic spray-painting procedure by

means of the ERBS. The main forces which interact on the charged
paint droplets during the traveling from the sprayer to the target are
described in this figure. These dominant forces are (a) the electric force
resulting from the electric field inclusion on the charged droplets in
between the sprayer to target distance, (b) the centrifugal force pro-
duced by the rotation of the sprayer’s bell cup, (c) the shaping airflow
force produced by ninety nitrogen/air nozzles around the bell cup,
deflects spray to ensure an axial flow toward the target, (d) drag, and
(e) gravity forces. The obtained fine and consistent disintegrated drop-
lets achieve a high-quality finished target surface by balancing these
factors.

(II) Sprayers Characteristic and Boundary Conditions: Fig. 2
describes the dimensions and applied boundary conditions over the
whole computational domain [Fig. 2(a)]. The structure of the conven-
tional electrostatic sprayer [Fig. 2(b)] with the novel design supple-
ments of high-voltage retractable blades (HVRB) [Fig. 2(c)] and
high-voltage adjustable control-ring (HVACR) [Fig. 2(d)] conductors
are also demonstrated. The HVRB conductor based on innovative
design can be easily configured in semi-closed [Fig. 2(c_1)] and then
fully closed [Fig. 2(c_2)] modes. Also, the diameter of the HVACR can
be controlled by adjusting the designated pins level based on the
required operating phase of spraying [Fig. 2(d)]. An ERBS, which was
designed and commercialized by SAMES (SAMES Technology, 2019),
is employed as a base sprayer for development purposes. The diameter
of the sprayer’s rotary bell cup, D¼ 65mm, is used as the reference for
non-dimensionalizing all reported dimensions in Fig. 2. The computa-
tional domain size is set as a cylinder with a diameter and height of 40
and 12D to ensure the flow is fully developed. The introduced atomiz-
ing system in Fig. 3 is employed to examine the effect of using heated
nitrogen instead of air in a method called Nitrotherm electrostatic
spray is considered. This simplified designed geometry and setup
reduces the computational costs while still overall meeting the flow
physics similar to what is considered in Fig. 2.

FIG. 1. Schematic description of the introduced forces during the general
Nitrotherm electrostatic spray-painting mechanism.
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The computational domain for the Nitrotherm electrostatic spray
scenario (Fig. 3) is a cylinder with 540 and 70D of diameter and height,
where D¼ 2.5mm is the diameter of the liquid injection nozzle used
for normalization. To provide an appropriate time step, ensure high
precision results and faster convergence, the Courant number is kept
below 0.45 to satisfy the time step around 1� 10�7 s. The atmospheric
boundary condition is set for defining the computing domains outside
borders similar to real conditions. The surfaces of the sprayer’s body,
workpiece, HVRB, and HVACR conductors are applied as a condition
of no-slip walls. A moving wall boundary is also considered for the
rotary bell cup. A paint liquid jet with a diameter of D¼ 2.5mm and a
constant flow rate is supplied inside the bell cup center. The velocity
inlet condition (UNozzles) is used for the nitrogen/air nozzle injector
surfaces. A specific potential value (U ¼ V1) is defined for the HVRB/
HVACR conductors, inside the bell cup surface and stainless steel
retaining collar surfaces for electric field boundary conditions. The

potential values in all other boundaries are set as zero value U ¼ 0.
The specific charge-to-mass ratio (qq

m) values are also applied to the
surface of the disintegrated droplets. The boundary condition for the
Nitrotherm electrostatic spray case is also specified in Figs. 3(a) and
3(b). For simplicity, water (qP ¼ 998 kg=m3) is used as the paint sur-
rogate, an identical approach can be seen in different references like
Darwish Ahmad et al. (2018) and Viti et al. (2010). Also, the atmo-
spheric air with density (qair) of 1:225 kg=m3 is considered.

(III) Map of Considered Cases: The optimization-based frame-
work’s progressive steps of the current study are illustrated in Fig. 4.
This figure also introduced all cases that are evaluated (52 cases for
first idea and 18 cases for second idea) and examined dominant
parameters over a broad range. The collected database aids in reaching
a better understanding of the process physics. In the formation of a
database for Nitrotherm electrostatic spray analysis for employing in
deep learning (DL) and CFD purposes, the parameters of nitrogen/air

FIG. 2. Schematic drawing of the overall computational domain’s dimensions and boundary conditions (a). Detailed description of ERBS’s head design including: Conventional
(b), with high-voltage retractable blades (HVRB) conductor (c) [Semi-closed mode (c_1), Fully closed mode (c_2)], and adjustable control-ring (HVACR) conductor (d).
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temperature (T), velocity (V), voltage of influential surface (u0), droplets
charge-to-mass ratio (qq

m), and size ranges (DP) are considered. In the
database for analysis of spraying using designated conductors, HVRB
and HVACR, the parameters of the cup and conductor voltage (uCup,
uConductor), droplets charge-to-mass ratio (qq

m), rotational speed (xbell),
airflow rate (m:

air), and size ranges (DP) are explored in a wide range.

We used the heated nitrogen electrostatic spray computations (a
total of 26 cases) to integrate the CFD database and the machine learn-
ing models. For these cases, we extracted the number N of time steps,
each containing information on the droplet’s size, velocity, tempera-
ture, and spatial position, as well as a 2D cross section of the continu-
ous phase velocity. The database passes through a preprocessing step,

FIG. 3. The dimensions and boundary conditions of the configured designed geometry for the Nitrotherm spray technique analysis (a). Zoomed visualization of the geometry (b).

FIG. 4. Progressive steps and solutions for the electrostatic and Nitrotherm spraying analysis that are considered in this current study.
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which consists of normalizing the flow variables by their maximum/min-
imum values. This ensures that the magnitudes of the values are compa-
rable and promotes better learning for the machine learning model.

Figure 5 shows the manipulated practical electric field areas gen-
erated using the revolutionary HVRB or HVACR conductor systems
in addition to the conventional ERBS. An appropriate balance must be
maintained between the droplets’ charge values and the strength and
distance of the produced electric field equipotential lines distribution.
The contours demonstrate larger covered areas with more robust
potential distribution in the proposed cases with the HVRB and
HVACR [Figs. 5(b) and 5(c)]. The dense electric fields, especially in
the case of HVRB, are extended enough to fully cover the regions
between the sprayer and workpiece at a scope of 0.25m distance and
accelerate the droplet transfer process. Features of the HVRB and
HVACR adjustability and determination capability of negative voltage
absolute value ranges significantly help to control spray plume,
broader or narrower formation of the coverage regions. The tilting
angle (Da�) in the ERBS with HVRB and the ring circumference dif-
ference (DL) in the ERBS with HVACR can be easily adjusted [see
Figs. 5(b) and 5(c)]. These two supplements have no voids or gaps in
the electric potential distribution. This improvement causes higher
effective electric force values, as well as an increment in the TE, to be
achieved, which will be discussed in Sec. III.

Figures 6(a) and 6(b) represent the produced Nitrotherm and elec-
tric fields between the liquid nozzle and target around the simplified
designated geometry. The high-velocity nitrogen is injected through a
circular layer with a diameter and thickness of 0.1 and 2.5mm. These
fields’ strength and coverage region are manipulated due to varied oper-
ational conditions described in the diagram of Fig. 4.

(IV) Model Setup and Discretization Methods: Details of the
discretization schemes used to achieve the precise results of the current
work are provided in Table I. For the discretization of all terms,
second-order accuracy is taken into account and a convergence target
of 1� 10�6 is considered. In this simulation analysis, the PIMPLE
algorithm—a hybrid of the PISO (Issa, 1986) and SIMPLE (Patankar
and Spalding, 1983) algorithms—is used for the pressure–velocity cou-
pling. This approach provides superior stability and a fast convergence
rate for larger time step values and greater coupling applicability in
this Eulerian–Lagrangian simulation, employing the SIMPLE and
PISO for the outer and inner corrector loops (Pendar and P�ascoa,
2019). Here, the wall treatment employed in the LES turbulence
modeling under the OpenFOAM framework (see Table I) relies on the
values of the yþ near-wall cells. The definition of the dimensionless
wall distance is yþ ¼ ðus � DyÞ=t, where us, Dy, and t are the friction
velocity, nearest distance to the wall surface and kinematic viscosity,
respectively. The used wall functions will be activated only in the
yþ>11 (Liu, 2016). The residuals of pressure and velocity reach
around 10�8 and 10�9, respectively. By analyzing the turbulent kinetic
energy power spectrum density (PSD) at a location near the ERBS’s
rim, the Kolmogorov power law-decay (f �5/3) indicates the statistical
scaling accuracy to evaluate the flow field inertial scales.

(V) Computational Grid Analysis: Fig. 7 presented a complete
visualization of a 3D fully structured quadrilateral grid produced over
the three various sprayers of the conventional ERBS (b) and (c), ERBS
with HVRB conductor (d), and the ERBS with HVACR conductor (e).
Based on the grid independency study in the previous studies of the
authors for the conventional ERBS (Pendar and P�ascoa, 2019; 2020),
between three different generated grids within overall cells of 5.5, 8.5,

FIG. 5. Representation of generated electric field distribution around the conventional ERBS (a), with HVRB conductor (b) and HVACR conductor (c).
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and 13.5 � 106, the medium grid (8.5� 106) shows satisfactory agree-
ment compare to available numerical and experimental results of other
works. The yþ values and prism layer height are considered 0.35 and
1.4� 10�4 m (at solid boundaries) for the medium grid to accurately
capture the high-Reynolds turbulent flow dynamic mechanisms at the

boundary layer. Also, a mesh sensitivity evaluation by considering the
Kolmogorov power law-decay (f �5=3) and proper capturing of turbu-
lent flow details is obtained. The total number, quality, and grid distri-
bution for two additional novel ERBSs with the HVRB and HVACR
conductors were generated in a similar manner and nearly comparable

FIG. 6. Produced distribution of the heated nitrogen-enriched (a) and electric field (b) around the simplified designated geometry.

TABLE I. Summary for discretization schemes implemented in the current study.

Discretization Schemes Description/comments

Time schemes Backward difference Second order, implicit
Pressure–velocity coupling PIMPLE Hybrid of SIMPLE- PISO algorithms
Spatial discretization Gradient Gauss linear Second order (Gaussian integration), Linear interpolation

(central differencing)
Divergence—Gauss upwind Second order unbounded (Gaussian integration), Upwind

differencing
Laplacian surface normal

gradient—Gauss linear corrected
Unbounded, second order, conservative

Wall functions �t—nutkWallFunction Serves as a condition with zero gradient for the modeled k
K—kqRWallFunction develops a �t near-wall profile using a modeled k

FIG. 7. Generated three-dimensional structured grid distribution over the entire computational domain (a). Close-up view of the conventional electrostatic sprayer (b) and (c),
with HVRB conductor (d) and HVACR conductor (e) head surface mesh.
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quantities. As an example, the overall computational cost in terms of sim-
ulation time is 774h for the case of conventional ERBS at a voltage of
�40kV when utilizing 60 processor cores. Figure 8 shows the generated
mesh for the simplified designed geometry employed for the Nitrotherm
spray analysis. The mesh is produced in the same manner and quality
mentioned in the previous case, with a total of 1.2� 106 cells.

C. Validation

Before employing optimized considered computational code, its
accuracy is validated, and the results are compared to the available experi-
mental data in three various stages of spraying. In Fig. 9(a), our numerical
result in the stage of the paint film propagation and spiral distribution
inside the bell cup surface is compared to the experimental snapshots of
Shen et al. (2019), and a suitable qualitative agreement is observed. In the
next stage, the subtended angle of shaping air flow outward close to the
sprayer rim is compared with the experiment of Darwish Ahmad et al.
(2018) [see Fig. 9(b)]. The obtained angle by present code a¼ 134.76� is
close to the experiment a¼ 136� ones. Figure 9(c) compared the sprayed

paint droplets distribution pattern of current work with the experiment
distribution data of Darwish Ahmad et al. (2018), at the same operational
conditions. It must be noted that an infrared thermographic flow visuali-
zation (IRFV) approach has been used in experimental reference to quali-
tatively evaluate the spray morphology. In brief, in this technique the
thermal waves start to attenuate after traveling through the droplets, then
the transmitted waves can be captured by means of the infrared camera.
The acceptable capturing of radial instabilities and spray border curvature
by the present numerical package is clear. Detailed information regarding
the mentioned experimental work’s operational setup and discussion
about flow pattern can be found in the author’s previous works by
Pendar and P�ascoa (2020).

III. RESULTS AND DISCUSSION
A. TE improvement of electrostatic spraying:
Employing high-voltage conductors

Figures 10–12 evaluate the spray droplets dispersion schema, col-
ored by their velocity, using three electrostatic sprayers of the

FIG. 8. Structured grid visualization around the designated geometry for the Nitrotherm spraying analysis (a). Close-up view of the injection section (b).

FIG. 9. The code validation by comparing the current numerical results with the experimental data: (a) Paint film propagation inside the rotary cup surface, Exp. of Shen et al.
(2019) (xbell ¼ 30k RPM, m:paint ¼ 400ml/min, t ¼ 5; 13 ms), (b) Airflow pattern outward the sprayer cup near the rim (xbell ¼ 50 kRPM, m:air ¼ 150 LPM,
Reynolds ¼ 5:1� 103), and (c) 3D sprayed paint droplets distribution, Exp. of Darwish Ahmad et al. (2018) (xbell ¼ 50kRPM, Scale Factor of Droplets ¼ 100).
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conventional ERBS, with the HVRB or HVACR external conductors
in various operational conditions. In the background, the 2D center
plane of the velocity magnitude contour with streamline visualization
and vortical structures (using the LIC (Line Integral Convolution)
method) is presented. In Fig. 10, four voltage ranges, from low to high,
for the sprayer’s cup and conductors are examined for the ERBS with
the HVRB and HVACR conductors. Noticeable impacts are visible in
the droplets’ trajectory behavior and deviation. The nature of the
manipulated/optimized electric field by adding the inventive HVRB
and HVACR conductors (see Fig. 5) and consequent occurrence of

electric force interaction with the other forces cause fast/accurate
movement of the atomized droplets and formation of the thicker paint
film, especially in the higher negative voltage values (�V � �40 kV).
At negative voltage values higher than the mentioned specific limit
(V � �40 kV), a more compacted/harmonized spray plume with a
narrower shoulder curve due to electric force is generated in the case
with the HVRB, which shows the effectiveness of this innovative sys-
tem in these operational regimes. In the lower negative voltage values,
the droplets deviate to the improper transverse direction due to insuffi-
cient electric potential distribution, mostly in the case of HVRB.

FIG. 10. 3D views of the spray droplets distribution pattern, together with the 2D center plane of velocity magnitude contour with streamline visualizing and vortical structures
(using LIC method) for ERBS with (a) HVRB and (b) HVACR external conductors, evaluated a broad range of voltage applied for sprayer’s body and conductors
(xBell ¼ 30kRPM, qq

m ¼ �0:5mC=kg, SFDroplet ¼ 200, t ¼ 90ms).
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The evolution of the circular cross section’s diameter (DPlume), proves
a decrement in DPlume by growing the negative voltage value and
obtaining more coverage area in both HVRB and HVACR (see Fig.
10). As shown in Fig. 10, the formed high-speed air velocity and toroi-
dal vortex patterns of continuous phase inside and around the spray
plum among the bell cup and target, in both cases exhibit the same dis-
cipline with obvious size distinction. The time is selected when the
spraying flow reaches the self-similarity condition and becomes fully
characterized (t 	 90ms). The inner toroid�shape recirculation zone
length (RInner) drastically reduced in higher electric potential values. In
other words, the outer toroid�shape recirculation zone (ROuter) forced
the spray shoulder to move closer toward the axial centerline, particu-
larly in cases using the HVACR conductor. Despite high turbulence
intensity and intense vortical structure in these two designated systems

in maximum potential field distribution, the toroidal vortex structures
in the continuous phase are controlled optimally. These two presented
new-generation of ERBS design dramatically increase the transfer effi-
ciency (TE), as compared in Fig. 16.

The continuous and discrete phase for three different ERBS mod-
els considered in the present work, at the moderate voltage range
under identical operating conditions and simulation time, is compared
in Fig. 11 and shows the efficiency and operationality of the presented
pure conductors. In cases employed supplements compared to the
conventional sprayer, higher electric force combined with momentum
turns droplets from the recirculation flow and directs them toward the
center-covered region (Fig. 11). The spray shape, instability pattern
and vortex breakdown mechanisms, the same as that observed in the
study by Stevenin et al. (2015) and Pendar and P�ascoa (2020), in the

FIG. 11. Paint spray distribution comparison for three introduced electrostatic spraying systems in Fig. 2: (a) Conventional ERBS, ERBS with (b) HVRB and (c) HVACR exter-
nal conductors (xBell ¼ 30 kRPM, qq

m ¼ �0:5 mC=kg, SFDroplet ¼ 200, t ¼ 90 ms). Velocity magnitude contour with streamline is visualized as a 2D-centered plane in the
background.

FIG. 12. Comparison of droplets path inside the formed spray plume, and streamline pattern for two various charge values (qq
m) of (a) �0:5mC=kg, and (b) �1 mC=kg

(xBell ¼ 30 kRPM, VCup ¼ �40 kV, VConductor ¼ �40 kV).
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plume’s shoulder for the conventional ERBS [Fig. 11(a)] and the ERBS
with the HVACR [Fig. 11(c)] is almost identical, but the transfer effi-
ciency in the latter is drastically higher. In Fig. 12, the droplets charge
value effect (qq

m), as one of the important parameters, has been exam-
ined. These droplets proportion to their charge amount is affected by
the locally produced electric field via sprayer surface and conductors.
The droplets with higher charge (qq

m ¼ �1mC=kg) in the face of the
electric field move toward the target in the appropriate direction at a
higher velocity, forming a spray plume with a lower diameter (DPlume)
and considerably thicker film. More non-uniformity and irregularity
in the droplet distribution and film pattern are obtained in
qq
m ¼ �1mC=kg compared to qq

m ¼ �0:5 mC=kg. The structural
adjustability of the HVRB and HVACR original design [described in
Figs. 5(b) and 5(c)] significantly helps with precise flow control besides
what is discussed in Figs. 10–12. In the HVRB conductor, the annular

retractable blades’ surface areas, distance from the rotary bell’s tip, and
tilting angle significantly affect the electric potential and paint spray
distribution and, consequently, coverage areas and uniformity. Also,
pin levels in the HVACR conductor allow adjusting the ring diameter
to control the spray plume size for different coating operational condi-
tions. These two techniques enable industrial manufacturers to opti-
mize the process and reduce material and energy consumption.

Figures 13–15 presented the wetted deposition area, droplets col-
ored by their size, for precise evolution of the conductor coupled with
the ERBS. A clear distinction in sticked droplet sizes, collision patterns
on the target, coverage areas (wetted), formed film thickness and
deposited film homogeneity is evident for the three presented electro-
static sprayers in Fig. 13. The efficiency of the inventive-introduced
designs regarding mentioned features is proved [see Figs. 13(b), 13(c),
and 14].

FIG. 13. The deposited paint droplets pattern on the target surface for the designated sprayer systems and operational conditions were introduced in Fig. 11. (a) Conventional
ERBS, (b) ERBS with HVRB external conductor, and (c) ERBS with HVACR external conductor.

FIG. 14. Illustration of stuck paint droplets on the workpiece for the ERBS with HVRB and HVACR external conductor at various voltage of (a) VCup ¼ �40 kV,
VConductor ¼ �40 kV, (b) VCup ¼ �60 kV, VConductor ¼ �60 kV, and (c) VCup ¼ �40 kV, VConductor ¼ �90 kV.
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By conductor and cup surface voltage increment and subsequent
influence on action force and disintegration process, resulting in a sig-
nificant reduction in droplet size that allows for the formation of
smooth, unblemished, esthetic appeal film (Fig. 14). The HVRB con-
ductor is more functional than the HVACR, particularly in regimes
with higher voltage values. The frames in Fig. 15 show the ERBS with
the HVRB and HVACR conductors, at lower charges
(qq

m ¼ �0:5mC=kg), the particle sizes that covered the target are
smaller than higher charges (qq

m ¼ �1mC=kg). The film with higher
quality, density, and prominent borders is constructed in the second
operational regime.

Figure 16 presents two critical metrics for spraying process analy-
sis, the overall transfer efficiency (TE) and Sauter mean diameter
(SMD), for all considered scenarios in this section. The TE ¼ ðmf

�miÞ � 100=mout is defined as a ratio of total droplet mass deposited
on the goal to total what is sprayed from the sprayer. mi, mf , and mout

are the initial mass, mass after painting/drying, and the mass expelled
from the sprayer nozzle. The SMD ¼

P
NiD3

i =
P

NiD2
i as criteria for

droplet fineness is defined as a droplet diameter with an identical vol-
ume ratio to surface area for the entire spray. Ni and Di denote the
diameter of droplet and numbers in the ith size range. The comparison
of the TE at the moderate (�40 kV)/low (�20 kV) regimes of voltage
for the conventional electrostatic sprayer (CES) with the HVRB and
HVACR conductors, show 12.21%/14.96% and 7.41%/11.82% incre-
ment compared to the CES. The TE values are significantly impacted by
increasing the voltage of conductors, which shows the proposed design
effectiveness and the CES with HVRB shows the best results. The high-
est TE of 85.15% and 80.78% are obtained in the voltage conductor’s
maximum values for the HVRB and HVACR conductors. Also, in the
high droplets charge (qq

m ¼ �1mC=kg) these values increase to
85.67% and 82.78%, respectively [see Fig. 16(a)].

The average SMD sizes prove appropriate disintegration for
obtaining fine film by using the CES with the HVRB and HVACR
conductors compared to the CES. The moderate (�40 kV)/low
(�20 kV) voltage operation regimes for the ERBS with the HVRB and
HVACR conductors, show 3.0%/0.98% and 8.7%/1.1% decrement in
average SMD compared to the CES. Yet/However, the average SMD
size at the peak of the voltage (�90 kV) for the conductor, the HVRB
obtained 5.94% growth compared to the HVACR. In sum, the HVRB
and HVACR show the best performance concerning the disintegration
process and spray size distribution for the average and high voltage
ranges.

B. TE improvement of electrostatic spraying: Applying
nitrotherm spray technique

Here the employment of a novel Nitrotherm spraying method
during the electrostatic coating for geometry described in Fig. 3 is
investigated. Using this method improves the application time to reach
faster drying time, higher film quality, less material consumption,
lower contamination in the booths, higher transfer efficiency. Here,
the effect of prominent parameters of the injected nitrogen velocity
(Fig. 17), sprayed droplets size distribution (Fig. 18), injected nitrogen
temperature (Fig. 19), sprayed droplets charge-to-mass ratios (qq

m)
(Fig. 20), and the voltage of body surface (Fig. 21) on the Nitrotherm
spraying process is analyzed over a broad range. Cahnging of the men-
tioned variations significantly affect on the spraying and deposition
process. As the following results prove, the mentioned prominent
parameters significantly affect the spraying and deposition pattern.

Figure 17 depicts the injected heated nitrogen velocity effect by
the evolution of the vortical structures with velocity magnitude con-
tours (I) and sprayed paint droplets deposited pattern (II). As is visible,
the injected nitrogen velocity significantly affects the droplet’s devia-
tion, overspray phenomenon, covered areas borders irregularity, film
thickness, and central filling. The five mentioned meaningful items are
optimized by growing the nitrogen injection velocity, and denser and
thicker finishes with high TE are produced.

Strike a balance between particle size, as the dominant influenc-
ing parameters, and other metric parameters, such as injected nitrogen
characteristic, is crucial. The considered sizes (minimum DMin, maxi-
mum DMax, and average DAverage) give to the Rosin–Rammler method
as an input variable. According to Fig. 18, the wetted area resulting
from the improper force interaction produced irregular and tiny areas
as a consequence of decreasing size (DAverage ¼ 15 lm). The evolution
reveals that the more significant droplet size distribution obtained har-
monized and thick coverage region. The diameter of the predicted
deposited area gradually increased by the increment of the assumed
initial droplet size, with a regular and uniform pattern.

The pure nitrogen that is separated from the air and heated for
the acceleration of the evaporation times is expelled from the ring
around the droplets injection nozzle. The heated nitrogen is combined
with ionized droplets and the electric field. In real operation, a nitro-
gen generator can easily assemble to the system of the ERBS. In Fig.
19, comparing compressed, heated nitrogen (I) to compressed air (II)
reveals that the former enhanced the TE and produced a more

FIG. 15. Evolution of the workpiece covered area by atomized droplets considered in various charge-to-mass ratios (qq
m) for the conventional ERBS equipped with (a) HVRB

and (b) HVACR external conductors.
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centralized, cosmetic, denser, and thicker film. The temperature
increments of nitrogen do not significantly affect the trajectory
and deposition pattern in the moderate temperature range
(TNitrogen ¼ 343:15�K). However, in very high temperatures, the cen-
tral parts of the covered area are deposited with a smaller size range of
droplets that clarify the efficiency of the Nitrotherm spraying.

Figures 20 and 21 assessed the effects of the charge-to-mass ratios
(qq

m) and surface voltage as key factors of electric field consideration
during the Nitrotherm electrostatic spraying. These two parameters
have almost the same impact on the discrete flow. Establishing a bal-
ance between the spray TE and quality by manipulating these varia-
tions and energy/material consumptions should be considered. Spray
with a narrower shoulder, lower unfavorable overspray and uniform/
dense deposition obtained in higher values of voltage and charge.

When the electric field is deactivated, an irregular and thin pattern is
obtained. It is visible that in the moderate range of voltage and charge
(qq

m ¼ 2mC=kg, V ¼ 60 kV) with optimum cost the harmonized/
thicker film and denser finished surface are obtained (see Fig. 20). It
can be understood that the combination of the Nitrotherm continuous
phase and moderate electric field dramatically improves the behavior
of the discrete spray phase.

C. Integration of deep learning models with CFD
database

In this section, we describe the performance of different machine
learning (ML) models for the prediction of droplet deposition and the
produced film deposition pattern on the target. The model also

FIG. 16. The obtained values of the over-
all transfer efficiency (TE) (a) and
Sauter-mean-diameter (SMD) (b) for the
introduced cases at various operational
conditions.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 075119 (2023); doi: 10.1063/5.0156571 35, 075119-15

VC Author(s) 2023

 08 Septem
ber 2023 13:45:49

pubs.aip.org/aip/phf


predicts the velocity field of the Eulerian phase. This subsection aims
to achieve accurate predictions with the fewest possible time steps,
reducing the computational time/cost required for CFD calculations.

Our proposed Deep Learning (DL) model follows an offline
approach for training, validation, and testing. In this method, the full
database in analysis, in our case related to heated nitrogen, is first com-
puted using CFD. The data generated by these CFD simulations are
then fed into the ML models for training. This methodology allows us
to comprehensively simulate various scenarios, capture the results, and
use these data to train the DL model about the behavior of heated

nitrogen. By training offline, we can efficiently ensure that a wide variety
of working conditions are covered in the training data. The training of
all the ML models is performed utilizing an NVIDIA Quadro P500
GPU, which offers powerful computing capability in ML problems.

1. Models’ architecture

First, it must be mentioned that a total number of time steps
N ¼ 120 was extracted for all the simulations. Since the total time of
simulation is T ¼ 30ms, we have an extraction of snapshots with a

FIG. 17. Evolution of injected heated nitrogen velocity effect on the droplets trajectory and deposition pattern: (a) UInjection ¼ 0 m=s, (b) UInjection ¼ 100m=s, (c)
UInjection ¼ 200m=s, and (d) UInjection ¼ 300m=s (TNitrogen ¼ 393:15�K). (I) Sprayed droplets distribution and 2D plane of heated nitrogen velocity magnitude controur with
vortical structures. (II) Deposited paint droplets pattern on the target.

FIG. 18. Assessment of droplet size distribution impact on the droplets path and deposited film structure during the Nitrotherm electrostatic spraying process: (a)
DAverage ¼ 75 lm,(b) DAverage ¼ 60 lm, (c) DAverage ¼ 45lm, (d) DAverage ¼ 30lm, and (e) DAverage ¼ 15lm (TNitrogen ¼ 393:15�K). (I) 3D spray plume visualization
and 2D plane of heated nitrogen velocity magnitude contour with streamlines. (II) Deposited paint droplets pattern on the target.
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time step of dt ¼ 0:25ms. The initial goal is to find a suitable model
that has input Ns snapshots of the side view of the spray, of the times
t : ft1; t2;…; tNsg which can give a prediction of the final spray depo-
sition. This output is given by an image snapshot of the top view of the
plate target at the time t ¼ tf , which shows the density of the

deposited droplets. The parameter conditions define various test cases
fTN2 ;UN2 ;V ;Dd; q=mg. The last two values are the emitted droplets’
size and the electric charge-to-mass ratio. These two can be joined,
defining the maximum droplet size, and so, the working condition of a
specific case becomes Ws : TN2 ;UN2 ;V ;Dmaxf g. Reducing the

FIG. 19. Comparison of heated nitrogen (I) and air (II) injection impact on the droplets trajectory and deposition pattern: (a) T ¼ 298:15, (b) T ¼ 343:15, and (c)
T ¼ 443:15�K. (I) Injected nitrogen temperature effect. (ii) Injected air temperature effect.

FIG. 20. Examination of the charge-to-mass ratios (qq
m) influence during the Nitrotherm electrostatic spraying process: (a) qq

m ¼ 0 mC=kg,(b) qq
m ¼ 1mC=kg, (c)

qq
m ¼ 2mC=kg, and (d) qq

m ¼ 3mC=kg (TNitrogen ¼ 393:15�K). (I) Sprayed droplets distribution and 2D plane of heated nitrogen velocity magnitude contour with vortical
structures. (II) Deposited paint droplets pattern on the workpiece.
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number of parameters that characterize a case helps with the correla-
tions for the machine learning model.

Different machine learning (ML) model architectures were
tested in this study, and different hyperparameters were set for each
one. To obtain an optimized model, the results with various hyper-
parameters are compared. The evaluated models were built using the
Convolutional Auto-Encoder (CAE) architecture, which employs
two Convolutional Neural Networks (CNN), one for encoding and
another for decoding. The core of the design is depicted in Fig. 22,
and several models differ in the type of layers employed but not in
the structure.

The core of a CNN is its convolutional layer, which extracts fea-
tures from the input data through a user-defined filter. The output of a
convolutional layer can be calculated using the following equation
(Mondal and Sarkar, 2022):

yi;j;k ¼ f
Xm
a¼1

Xn
b¼1

Xd
c¼1

wa;b;c;kxiþa�1;jþb�1;c þ bk

 !
; (19)

where yi;j;k is the output of the kth feature map at position ði; jÞ, f is
the activation function, wa;b;c;k is the weight of the kth filter at position
ða; b; cÞ, xi;j;c is the input pixel value at position ði; jÞ and channel c,
and bk is the bias term for the kth feature map. The initial proposed
autoencoder is composed of the layers of Table II. Each convolutional/
deconvolutional layer was followed by a batch normalization layer and
a rectified linear unit (ReLU) activation function. We define the model
architecture by the size of the filters of encoding/decoding
ðN1;N2;N3Þ and fully connected layers ðNLÞ neurons number. Table
II proposes the 8 � 16 � 32 (64) architecture, a model called initial
CAE model used to observe the filter size increasing effect.

The encoding and decoding CNNs are connected with a flattened
latent space. This space is connected by a concatenate layer with the
working condition arrayWs for increasing the awareness of the model to
the physical condition of the images. Since our input is temporal images,
we add a recurrent layer on the latent space. This type of layer is called
allow information to be passed from time step to time step. This is the
case of Long Short-Term Memory (LSTM) which creates a loop that
allows the network to maintain an internal state, which can capture the
temporal dependencies in the data. The output of an LSTM layer at time
step t can be calculated using the following equations (Deng et al., 2019):

ft ¼ r Wf xt þ Uf ht�1 þ bf
� �

; (20)

it ¼ r Wixt þ Uiht�1 þ bið Þ; (21)

ot ¼ r Woxt þ Uoht�1 þ boð Þ; (22)

ct ¼ ft 
 ct�1 þ it 
 tanh Wcxt þ Ucht�1 þ bcð Þ; (23)

ht ¼ ot 
 tanh ctð Þ; (24)

where r is the sigmoid activation function,
 is the element-wise mul-
tiplication operator (or Hadamard product), xt is the input at time
step yi, ht�1 is the output of the previous time step, ct is the cell state,
and ft , it , ot are forget, input, and output gates, respectively. The
“forget” gate means that the cell status can be “forgotten” if the gate
it’s on. This type of cell can be combined with the convolutional layers,
gaining then the capability of handle spatial-temporal patterns calls
ConLSTM layers (Shi et al., 2015; Gao et al., 2022). We created a
model called CAE_LSTM, which has the same architecture 8 � 16
� 32(64), but the convolution layers are replaced by ConLSTM and
the Max-Pooling becomes three-dimensional (3D), which as a kernel
of (1, 2, 2).

FIG. 21. Evolution of various body surface voltage effect on the droplets trajectory and deposition shape during the Nitrotherm electrostatic spraying: (a) V ¼ 0,(b) V ¼ 30,
and (c) V ¼ 60 kV(TNitrogen ¼ 393:15�K). (I) Spray plume visualization and plane of heated nitrogen velocity magnitude contour with steamlines and (II) deposited paint drop-
lets pattern on the target.
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FIG. 22. Schematics of the proposed Convolutional Auto-Encoder (CAE) architecture.

TABLE II. Proposed architecture of the 8 � 16 � 32(64) Convolutional Auto-Encoder (CAE) model.

Encoder

Layer Layer Type Kernel, Output dim. Kernel size No. filters/neurons

0 Input (Ns, 512, 512, 1) � � � � � �
1 Convolution (Ns, 512, 512, 8) (3, 3) 8
2 Max-Pooling (Ns, 256, 256, 8) (2, 2) � � �
3 Convolution (Ns, 256, 256, 16) (3, 3) 16
4 Max-Pooling (Ns, 128, 128, 16) (2, 2) � � �
5 Convolution (Ns, 128, 128, 32) (3, 3) 32
6 Max-Pooling (Ns, 64, 64, 32) (2, 2) � � �
7 Convolution (Ns, 262144) (3, 3) 64

Fully Connected Latent Space

8 LSTM (Ns, 64) � � � /64
9 Input (Ws) (4, 1) � � � � � �
10 Concatenate (64þ 4) � � � � � �
11 Fully connected (64 � 64 � 16) � � � /65 536

Decoder

12 Transpose Convolution (64, 64, 32) (3, 3) 32
13 Up-sampling (128, 128, 32) (2, 2) � � �
14 Transpose Convolution (128, 128, 16) (3, 3) 16
15 Up-sampling (256, 256, 16) (2, 2) � � �
16 Transpose Convolution (256, 256, 8) (3, 3) 8
17 Up-sampling (512, 512, 8) (2, 2) � � �
18 Transpose Convolution (512, 512, 1) (3, 3) 1
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Another way to capture the temporal correlations on the input
images is by treating the time as a third dimension and use a 3D con-
volution layer (Con3D). The Con3D operation can be expressed using
the following equation (Gao et al., 2022; Yousif et al., 2023):

yi;j;k;d ¼
Xm
a¼1

Xn
b¼1

Xp
c¼1

Xq
e¼1

Xr
f¼1

wa;b;c;e;f ;dxiþa�1;jþb�1;kþc�1;e;f þ bd;

(25)

where yi;j;k;d is the output at position ði; j; kÞ and channel d, wa;b;c;e;f ;d

is the weight of the dth filter at position ða; b; c; e; f Þ, xi;j;k;e;f is the
input volume. Here, we employed these layers called CAE_3D, which
used Con3D layers with a kernel size of (3, 3, 3).

2. Prediction of droplets deposition on the target

The auto-encoder was trained using the mean squared error loss
function and the Adam optimizer (Kingma and Ba, 2014) with a learn-
ing rate of 0.001. The performance of the model was monitored on the
validation set using the Mean Squared Error (MSE) and Mean
Absolute Error (MAE) metrics that are defined as

LMSE ¼
1
n

Xn
i¼1

yi � ŷið Þ2; (26)

LMAE ¼
1
n

Xn
i¼1
jyi � ŷi j; (27)

where n is the number of samples, yi and ŷi are the true and predicted
values of the ith sample. The data were divided in ðNt ;Nv;NteÞ
¼ ð21; 3; 2Þ, corresponding to the number of cases for training, vali-
dation and for testing, respectively. Since our dataset is composed of a
small dataset (26 cases), the validation/training was 13%, and the con-
vergence of the models upon the epoch was defined by an early stop-
ping criterion, avoiding overfitting the model’s parameters. This
criterion stops the training whenever the LMSE error is bigger than the
minimum reached within 1000 epochs.

The two cases for testing the predictions of the model are defined
as follows:

Test A, Ws : f393:15K; 150m=s; 30 kV; 5:72� 10�4 nmg and
Test B, Ws : f393:15K; 150m=s; 60 kV; 45:8� 10�4 nmg. These
two test cases are not fed to the DL training or validating procedure,
so they are unseen by the model in the training step and just used in
the testing step to ensure a generalization. These testing cases are
highlighted in Fig. 4. Figure 23 shows the significant role of the snap-
shot numbers [Ns] as an input for the DL model. Here, we observed
the MSE loss parameter. The outcome reveals a distinctive influence
on the MSE reduction for the CAE and CAE_LSTM model.

FIG. 23. Influence of the number of input snapshots (Ns) on the MSE, for different
ML models tested.

FIG. 24. Influence of the (a) model architecture and (b) the hyper parameter batch size (Nb). Accuracy parameters calculated for the validation test cases.
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This pattern signifies a convergence in the MSE, indicating that the
error tends to stabilize once a certain threshold of Ns is given.
Specifically, a steady-state performance is achieved at approximately
12 snapshots for the CAE_LSTM model, suggesting that further
increasing the input size does not substantially enhance model accu-
racy. It also underscores the interplay between deep learning architec-
tures and the dynamic temporal dependencies within the data, which
is very well captured by the CAE_A and CAE_LSTM. Considering a
batch size of 1, 2, and 4, we tested for the different models designed
[Fig. 24(a)] and for different sizes of input snapshots [Fig. 24(b)]. The
quantitative comparison between the model architectures, the choice
of the input snapshot number, and the hyperparameters for choosing
the best ones are initially made with the MSE andMAE errors.

Since we are dealing with images, two more common parameters
in this field are used to ensure the reconstruction quality of the images.

The first is the Structural Similarity Index (SSIM), a metric used to
measure the similarity between two images, SSIMðx; yÞ
¼ ð2lxlyþc1Þð2rxyþc2Þ
ðl2

xþl2
yþc1Þðr2

xþr2
yþc2Þ

, where x and y are the two images being com-

pared. A higher SSIM value indicates a greater similarity between the
images. The other important measurement is the Peak Signal-to-Noise

Ratio (PSNR) given by PSNR ¼ 10 � log10 MAX2

MSE

� �
, where MAX is the

maximum possible pixel value (e.g., 255 for 8-bit images), and MSE is
the mean squared error between the original and reconstructed
images.

Batch size is a crucial hyperparameter in deep learning models
that regulates how many samples are sent into the machine learning
model simultaneously during each training iteration. Since it can affect
model convergence, generalization, and computational efficiency,

FIG. 25. Comparison of the prediction tar-
get droplet deposition. Scaled by the den-
sity D. (I) CFD, (II) ML, and (III)
normalized difference.
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choosing a suitable batch size is crucial in deep learning applications.
The choice of batch size is typically influenced by the model’s com-
plexity, the dataset’s size, the hardware’s memory capabilities, and the
optimization strategy used for training. Although larger batch sizes
may result in faster convergence and less generalization error, they
also need more memory and may cause unstable convergence. In our
case, we tested for small batch sizes because two-dimensional and
three-dimensional layers require a large amount of memory. The
impact on the accuracy of the predictions with batch sizes of 1, 2, and
4 are shown in Fig. 24(b). In this frame, four parameters that can pro-
vide the accuracy of the prediction are calculated. This was calculated
for both test cases (Test A, Test B), and the mean value was obtained.
We observed that a batch size of 2 is the best, the one is too sparcy,
and the four can lead to overfitting due to the small database.

With these assessments, we choose the model CAE_LSTM, with
a number of input snapshots of 12 and a batch size of 2. With the
model trained, we predict the droplet deposition for Tests A and B
(see Fig. 25). The figure compares the CFD results (I) with the predic-
tions made with the ML model (II). Notice that we choose two very
different working conditions to truly test the generalization. The
results show a very good prediction, where the core and shape are pre-
cisely captured, and the error is on the edges. For Test A, we also
noticed the error on the droplets scattered by the velocity field,
although what really is essential to capture is the core, which is the
region of high density.

Since the goal is to predict the area of deposited droplets on the
target, we calculate the final error of accuracy by the area of droplets of
the CFD vs the ML prediction, being �A ¼ jAML � ACFDj=ACFD (III).
With this, the prediction error for the deposited droplets on the target
for Test A and B are 0.877% and 0.295%, respectively. These very low
errors for deposition are very promising for fast simulation of these
types of fluid dynamic problems.

3. Prediction of continuous velocity field

Here, a new approach using the latest ML model is employed for
predicting the continuous velocity field. This continuous velocity field
is characterized by the LIC method, which enables us to identify the
vortical structure’s location and behavior. Here, we have implemented
the same machine learning architectures and cases (Test A and Test B)
as used for droplet deposition (see Fig. 26). The 2D snapshots were
normalized by the distance H, which is the distance from the inlet to
the plate, where z=H ¼ 0 is the target wall. Moreover, the velocity field
for a better comparison is normalized to u� ¼ u=150. As we observe,
the predictions show very good agreement with the CFD solution. The
red lines on the figures are the distances between the vortex centers,
for which the prediction shows exactly the same pattern as the vortices
calculated by the CFD.

As for the spray deposition pattern, we also calculated the four
accuracy measurements of the image reconstruction fLMSE; LMAE;
SSIM; PSNRg ¼ f0:0065; 0:0194; 0:946; 0:161g. To check the accu-
racy of the field values prediction, we plot a histogram of the pixel
intensity for each pixel of the predicted images and compare it with
the CFD results. We tested this for the CAE and CAE_LSTM architec-
ture, see Fig. 27.

The intensity of pixels in the reconstructed image is closely
related to the velocity magnitude of the 2D plane snapshot, and

therefore, the area of the pixel intensity histogram can be used as an
indicator of the flow energy. By analyzing this relationship, we can
evaluate the performance of the two different deep learning models for
this specific prediction task. Our results demonstrate that the
CAE_LSTM model outperforms the simple CAE model for predicting
the LIC. As we observed in our analysis of droplet target prediction,
incorporating cells that are aware of temporal dynamics significantly
enhances prediction accuracy.

IV. CONCLUSION

The present study conducted a comprehensive hybrid analysis of
high-fidelity CFD and deep learning (DL) for maximizing the electro-
static spraying process efficiency. The results prove that employing
designed novel conductors with high-voltage retractable blades
(HVRB) and high-voltage adjustable control-ring (HVACR) in combi-
nation with Nitrotherm spraying technique during the electrostatic
atomizing allows the spraying industrial manufacturers to reduce

FIG. 26. Comparison of the continuous velocity field predicted results with CFD
data for both test cases. Test A: (I) CFD Test A: (II) ML CNN Test B: (I) CFD Test
B: (II) ML CNN.
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material and energy consumptions, enabling them to obtain high-
quality, uniform and esthetic appeal film together with a higher range
of transfer efficiency (TE). Employing heated nitrogen instead of air
and using ERBS with mounted innovative HVRB and HVACR con-
ductors lead to higher transfer efficiency (TE), rare overspray occur-
rence, formation of an esthetic paint film with higher quality, lower
paint consumption, VOC emission, and application time.
Comparative results proved that the ERBS with the novel HVRB con-
ductor obtained significant improvement in spray pattern/droplet
direction, film homogeneity/density and two critical metrics of the
overall TE and average SMD with around 12.21% (from 71.7% to
83.9%) enhancement and 3.0% (from 6.25 to 5.9lm) decrement com-
pare to CES at the moderate voltage (�40 kV).

In the present work, a deep learning model is developed to enhance
the prediction accuracy and reduce the computational time for two criti-
cal aspects of the Nitrotherm spraying flow dynamics. The considered
machine learning model analyzes 2D images of the spray distributions
captured from the side and top views, as well as LIC side snapshots of
the Eulerian velocity field. Since our model is designed to work with 2D
images, we opted for convolutional models and tested different architec-
tures. The findings revealed that utilizing convolutional models, incorpo-
rating recurrence to the encoding/decoding layers, along with the use of
LSTM cells for temporal inputs, aids in feature extraction. The predic-
tions indicate that computation time can be reduced by around 90%.
The final shape of the liquid deposition on the target is predicted with an
error rate of only 1%. Additionally, the introduced model visualized the
vortex structures implicit in the spray evolution under the applied exter-
nal conditions with high precision. In review, our deep learning model
has demonstrated the potential to enhance prediction accuracy and
reduce computational time for flow dynamics cases.
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